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mGHT INVESTIGATION O F  STABILITY AND 

CONTROL CHARACTERISTICS O F  A l/g-SCAL;E MODEL OF A 

FOUR-PROPEUXR TILT-WING V/STOL TRANSPORT 

By W i l l i a m  A. Newsom, Jr., and Robert H. Kirby 

SUMMARY 

A f l i g h t  investigation has been made t o  study the  s t a b i l i t y  and control 
character is t ics  of a l/g-scale model of a four-propeller t i l t-wing V/STOL trans- 
port  airplane. The tests included hovering f l i g h t s  i n  and out of ground ef fec t  
and l eve l  f l i g h t  and descent conditions i n  the  t rans i t ion  speed range. No ar t i -  
f i c i a l  s tab i l iza t ion  w a s  used i n  any of t he  t e s t s .  
s t a t i c a l l y  and dynamically unstable f o r  many of the  f l igh t - tes t  conditions, it 
could generally be controlled and maneuvered easi ly .  The descent t e s t s  showed 
tha t  the  configuration had at  l ea s t  a 6 O  descent capabili ty with no adverse 
e f fec ts ,  and t h a t  an additional 3' or 4' of descent angle w a s  available before 
completely unacceptable f lying qua l i t i e s  were encountered as a r e su l t  of wing 
s t a l l i ng .  I n  a l l  f l i g h t  regions, t he  minimum t o t a l  control powers found t o  be 
sa t i s fac tory  i n  the  model f l i g h t  tests w e r e  l e s s  than the  control powers planned 
f o r  the  ful l -scale  a i r c r a f t .  

Even though the model w a s  

INTRODUCTION 

An investigation t o  study the low-speed dynamic s t a b i l i t y  and control char- 
ac t e r i s t i c s  of a four-propeller t i l t-wing V/STOL transport  airplane has been made 
a t  the  NASA Langley Research Center using a l/g-scale model. 
vided with a full-span double s lo t t ed  f l a p  which i s  programed t o  def lect  as the  
wing incidence changes. 

The wing i s  pro- 

The investigation included free-f l ight  tests i n  s t i l l  a i r  f o r  study of the 
vertical-take-off-and-landing and hovering-flight conditions and free-f l ight  
tests i n  the  Langley ful l -scale  tunnel f o r  study of slow constant-altitude 
t rans i t ions  and simulated descending-flight conditions at low t rans i t ion  speeds 
The r e su l t s  were mainly qua l i ta t ive  and consisted of p i l o t s '  observations and 
opinions of the  behavior of the  model. 

SYMBOLS 

b wing span, f t  

Cn yawing-moment coefficient,  Mz/qSb 



loca l  wing chord, f t  

wing mean aerodynamic chord, f t  

model propeller diameter, f t  

height of model fuselage above ground ( e  = Oo) 

moment of i n e r t i a  about X body axis, slug-ft2 

moment of i n e r t i a  about Y body axis, slug-ft2 

moment of i n e r t i a  about Z body axis, slug-ft2 

wing incidence, deg 

radius of gyration about X body axis, f t  

radius of gyration about Y body axis, f t  

radius of gyration about Z body axis, f t  

lift, l b  

l i f t  i n  hover out of ground ef fec t  

ro l l ing  moment due t o  r o l l  angle, ft-lb/deg 

pitching moment due t o  fuselage pi tch angle, ft-lb/deg 

yawing moment, f t - lb  

yawing moment out of ground effect ,  f t - l b  

rate of ro l l ,  radians/sec 

dynamic pressure, lb / f t2  

wing area, f t 2  

velocity, f t /sec 

weight, l b  

coordinate axes 

angle of a t tack of fuselage, deg 

angle of s idesl ip ,  deg 
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7 fl ight-path angle, deg 

E a  ai leron deflection, deg 

6f t o t a l  f l ap  angle, measured between wing chord and second element of 
f lap,  deg 

9 fuselage pi tch angle, deg 

r o l l  angle, deg 

APPARATUS AND TESTS 

Model 

General description.- Photographs of the 1/9-scale model used i n  the inves- 
t iga t ion  are presented as figure 1. 
more important dimensions are presented i n  figure 2. The geometric characteris- 
t i c s  of the model are l i s t e d  i n  table  I. The variation of center of gravity with 
wing incidence f o r  the model and f o r  the airplane is  shown i n  figure 3 .  The 
moments of i ne r t i a  of the configuration were essent ia l ly  constant throughout the 
wing incidence range, and the average values fo r  the model (scaled up) are com- 
pared with those of the full-scale airplane i n  table  11. 

Drawings of the model showing some of the 

The four main propellers of the model were interconnected by a system of 

The wing was  pivoted at  the 30-percent 
shafts and gear boxes and were driven by a pneumatic motor. The t a i l  rotor  w a s  
driven by a separate pneumatic motor. 
mean aerodynamic chord s ta t ion  and could be rotated by an e l ec t r i c  motor between 
angles of incidence of 0' and 90° during f l i g h t .  
slat along tha t  par t  of the leading edge tha t  w a s  behind the up-going propeller 
blades. 
f l ap  shown i n  figure 2(b) which w a s  programed with a simple cam and follower t o  
deflect  as the wing incidence changed. The programed variation of  f l ap  deflec- 
t ion  with wing incidence is  shown i n  figure 4. 

by d i f fe ren t ia l ly  changing the t o t a l  blade pi tch of the four main propellers, and 
yaw control was provided by d i f fe ren t ia l ly  deflecting the conventional ailerons 
at  t h i s  90° wing angle. 
f l a p  as shown i n  figure 2(b) and were located on the two outboard segments of the 
f l ap  as shown by the shaded area i n  figure 2(a). 
t o t a l  blade pi tch of the t a i l  rotor  and pi tch control f o r  maneuvering was pro- 
vided by a j e t  mounted at  the rear  of the model. It should be pointed out t ha t  
on the airplane both pi tch control and trim are obtained from the t a i l  rotor,  but 
on the model, f o r  mechanical reasons, it w a s  not desirable t o  obtain control from 
the t a i l  rotor .  The controls were deflected by flicker-type ( f u l l  on or  o f f )  
pneumatic actuators except f o r  the pi tch trim control of the t a i l  rotor  which w a s  
actuated by an e l ec t r i c  motor. The main propeller-blade pi tch actuators were 
equipped with an integrating-type trjmmer tha t  trimmed the control a small amount 
each time the f l i cke r  control w a s  given. The aileron actuators were mounted, fo r  

The wing was equipped with a 

The wing w a s  a lso equipped with the 47-percent-chord double s lo t ted  

Control system f o r  hovering f l igh t . -  In hovering, r o l l  control w a s  provided 

The ailerons were b u i l t  in to  the  rear  element of the  

Pitch t r im was obtained by 
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trim, on movable platforms driven by a small e l e c t r i c  motor. The j e t  reaction 
control used f o r  p i tch  control w a s  not equipped with a trimmer. 

Control system f o r  conventional forward f l i gh t . -  I n  conventional forward 
f l i g h t  where the  wing and propellers were at  a tilt angle of Oo, the  model had 
conventional ailerons and rudder f o r  r o l l  and yaw control. 
did not provide suf f ic ien t  yawing moment by i tself;  therefore, the  yaw control 
w a s  augmented i n  the  model tests by the  use of d i f fe ren t ia l  blade p i tch  changes 
on the four main propellers.  
hovering w a s  a l so  used throughout t he  investigation from hovering t o  conventional 
forward f l i g h t .  
gramed t o  move as the wing incidence changed but t he  t a i l  w a s  not controlled by 
the  p i l o t .  
incidence is shown i n  figure 4. 

The rudder, however, 

The j e t  reaction control used f o r  pi tch control i n  

The model did have an all-movable horizontal  t a i l  t h a t  w a s  pro- 

The programed var ia t ion of t he  horizontal- ta i l  incidence with wing 

Control system f o r  t r ans i t i on  f l i gh t . -  In  the  t r ans i t i on  range the  ai lerons 
and the  d i f f e ren t i a l  propeller p i tch  control interchange t h e i r  function as the  
wing incidence changes. On the ful l -scale  airplane a control mixing device is  
used t o  give the  desired response t o  the  p i l o t ' s  control movements. 
the propeller blade p i tch  and ai leron control are mixed according t o  the  wing 
incidence s o  t h a t  lateral  s t i c k  always results i n  a r o l l  control and pedal dis- 
placement gives a y a w  control.  No such mechanical control mixer w a s  used i n  
t h i s  model investigation, however. The model p i l o t s  were able t o  use various 
combinations and amounts of these controls by e l e c t r i c a l  switching of the f l i cke r  
mechanisms and by ground adjustment of the  amount of control given by the  f l i cke r  
mechanisms. 
presented subsequently. 

In  general, 

The control moments used during the  d i f fe ren t  f l i g h t  conditions are 

T e s t  Techniques 

The basic tes t  setup used i n  the  present tests was e s s e n t i a l l y t h e  same as 
t h a t  used f o r  a l l  f l ight tests i n  the  Langley ful l -scale  tunnel and is  illus- 
trated i n  figure 5 .  An additional operator (not shown i n  f i g .  3 )  was located 
near the  p i tch  p i lo t  t o  control the  wing incidence i n  some of t he  tests.  The 
power f o r  the  wing tilt motor, t he  control t r im motors, and t h e  electric-control 
solenoids was supplied through w i r e s ;  and the  air  f o r  t he  pneumatic motors, the  
jet-reaction control, and the control actuators was supplied through p la s t i c  
tubes.  These w i r e s  and tubes were suspended f r o m  the  top  of t h e  tunnel and 
were taped t o  a safety cable (1/16-inch braided a i r c r a f t  cable) from a point 
about 15 feet above the  model down t o  t h e  model i t se l f .  The safety cable, which 
was attached t o  t h e  fuselage near the  model center of gravity, was used t o  pre- 
vent crashes i n  the  event of a power o r  control failure o r  i n  the  event t ha t  the  
p i lo t s  l o s t  control of t he  model. Separate p i l o t s  are used t o  control the  model 
i n  pitch,  r o l l ,  and yaw. 
which the p i lo t ing  dut ies  are divided i n  preference t o  the  conventional single- 
p i l o t  technique is  explained i n  d e t a i l  i n  reference 1. 
descending) f l i g h t  two p i lo t s  are  sometimes used, one p i l o t  controll ing both 
r o l l  and yaw. 

The reasons f o r  using t h i s  model f l i gh t  technique i n  

In forward (and 

Tests t o  study the  level-fl ight t r ans i t i on  character is t ics  of a model can 
be made i n  the  Langley fuJ-l-scale tunnel e i t h e r  by continually increasing o r  
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decreasing the tunnel airspeed u n t i l  the t rans i t ion  i s  completed or by holding 
the tunnel airspeed constant a t  intermediate speeds f o r  more careful study of 
any s t a b i l i t y  and control character is t ics  or problems tha t  may be encountered. 

It has been found i n  previous work with t i l t-wing V/STOL a i r c ra f t  (see 
ref .  2 )  t ha t  one of the most c r i t i c a l  f l i gh t  conditions i s  the pa r t i a l ly  tran- 
si t ioned descent condition which w i l l  probably be used for most landing 
approaches. I n  order t h k t  this condition might be studied i n  the present 
investigation, the  free-f l ight  tes t ing  technique i n  the Langley ful l -scale  
tunnel has been extended t o  permit tests representing the descent condition 
t o  be made i n  the horizontal airstream of the tunnel. The factors  involved 
i n  the simulation of a descent condition a re  i l l u s t r a t ed  i n  figure 6. This 
figure shows the  balance of forces involved i n  actual  descent a t  the l e f t  and 
i n  the simulated descent a t  the r ight .  For the  actual descent case, the l i f t ,  
drag, and weight forces a re  i n  balance, the drag being balanced by the forward 
component of the weight acting along the f l i g h t  path. For the  simulated 
descent condition i n  the horizontal airstream of the tunnel, the  model i s  flown 
with effectively the same l i f t  and drag, but the drag cannot be balanced by a 
component of the weight and must be balanced by some thrust  force tha t  i s  inde- 
pendent of the normal airplane l i f t  and propulsion system. 
compressed-air j e t  exhausting from the rear  of the model where the aerodynamic 
interference effects  would be negligible was used. I n  t h i s  way the aerodynamic 
effects  of descending or decelerating f l i gh t ,  which a re  very important f o r  many 
V/STOL a i r c ra f t  types, can be simulated with the model i n  leve l  f l i g h t  i n  the 
tunnel. This method of simulation, however, does not account f o r  the effects  
of descent angle on c lass ic  dynamic l a t e r a l  s t ab i l i t y ,  but fortunately these 
effects  a r e  small for the  descent angles l ike ly  t o  be encountered i n  normal 
operation and are  of much l e s s  importance than the aerodynamic effects  which 
can be correctly simulated. 

A small high-pressurc 

For hovering t e s t s ,  a t e s t  setup very similar t o  tha t  shown i n  figure 5 i s  
made i n  a special  hovering t e s t  area located i n  a large enclosure where the 
p i lo t s  can be stationed closer t o  the  model than i s  possible i n  the t e s t  section. 
It has been found very desirable, par t icular ly  during t e s t s  i n  which the model 
i s  flown very close t o  the ground, f o r  the  p i lo t s  t o  be near the model so t ha t  
they can notice more readily and correct f o r  s l igh t  changes i n  model a t t i tude  
and al t i tude.  

Tests 

The free-f l ight  investigation included tests a t  three different f l i gh t  
conditions: (1) hovering (both i n  and out of ground ef fec t ) ,  (2) steady leve l  
forward f l i g h t  a t  
iw = O o ) ,  and (3) simulated descent f l i g h t  (at 
f o r  descent angles of Oo, 5 O ,  'f', loo, l3O, and l5O). 
l ab i l i t y ,  and the general f l i g h t  behavior were determined qual i ta t ively from 

a = 0' (over the  whole t rans i t ion  range from hovering t o  
iw = 20°, 30°, 40°, and 50' 

The s t ab i l i t y ,  control- 

the p i l o t s  ' observations; and-motion-picture 
made as an a id  i n  the p i l o t s '  evaluation and 
on the modelmotions. 

records of t h e  f l i g h t  t e s t s  were 
t o  supply some quantitative data 
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No a r t i f i c i a l  s tab i l iza t ion  was used i n  any of the t e s t s .  The basic s ta-  
b i l i t y  of the model was studied, i n  each f l i g h t  condition, by having two of the 
p i lo t s  controlling the  model as steadily as possible ( a f t e r  a trimmed condition 
had been established) while the  th i rd  p i l o t  made the t e s t s  required t o  determine 
the s t a b i l i t y  of a par t icular  phase of the model motion. I n  tha t  manner, fo r  
example, the stick-fixed pitching o r  rol l ing motions of  the model were deter- 
mined. The control labi l i ty  was determined i n  the same manner by each p i l o t  i n  
turn varying h is  control power t o  determine the amount of control required f o r  
steady flying and f o r  performing various maneuvers. 
t r o l  character is t ics  of a model do not, however, give the complete picture  of 
the model f l i gh t  characterist ics;  therefore, the  model p i lo t s  also assessed i t s  
general f l i gh t  behavior, including the e f fec ts  of such factors  as wing s ta l l ing .  

The basic s t a b i l i t y  or con- 

A few force tests were made, i n  addition t o  the free-fl ight t e s t s ,  t o  help 
document some of the  aerodynamic and s t a b i l i t y  and control characterist ics of 
the model. 

RESULTS AND DISCUSSION 

A motion-picture f i lm supplement ( ~ 8 3 5 )  t o  t h i s  report has been prepared 
and i s  available on loan. 
w i l l  be found a t  the back of t h i s  document. 

A request card form and a description of the fi lm 

I n  reviewing the  resu l t s  of the f l i g h t  tests, it should be remembered tha t ,  
~ as  shown i n  tab le  11, the  scaled-up weight and i n e r t i a  character is t ics  of the 

test model were high i n  comparison with the  ful l -scale  values. 
gyration of the model however were of approximately the r ight  magnitude. These 
high m a s s  character is t ics  of the model could have affected the detailed resu l t s  
of this investigation; f o r  example, they could cause s l igh t  changes i n  the 
period of the hovering osci l la t ions o r  changes i n  the  damping of the l a t e r a l  
osci l la tory motions i n  forward f l i gh t .  It i s  fe l t ,  however, that since the 
periods of the  motions experienced with t h i s  model were relat ively long, the 
conclusions reached from the f l i g h t  t e s t s  are  val id  and were not appreciably 
affected by the high mass characterist ics.  
t e s t s  would, however, apply direct ly  t o  f l i g h t  a t  an a l t i t ude  of about 
11,000 fee t  because of the  relationship between correct and actual  wing loadings. 

The radii of 

The resu l t s  of the forward-flight 

A l l  the  resu l t s  a r e  f o r  the case of the  a i r c r a f t  without a r t i f i c i a l  sta- 
b i l iza t ion  since no a r t i f i c i a l  s tab i l iza t ion  w a s  used a t  any time during the 
t e s t s .  

Hovering Out of Ground Effect 

The f l i g h t  t e s t s  i n  s t i l l  air  out of ground effect  t o  determine the basic 
s t a b i l i t y  i n  hovering f l i g h t  showed that, as expected with a tilt-wing configu- 
ration, the model had unstable control-fixed osci l la t ions i n  pi tch and r o l l  and 
w a s  neutrally s table  i n  yaw. 
r o l l  a r e  shown by the  t i m e  h i s tor ies  presented i n  figures 7 and 8. 
h is tor ies  were obtained from motion-picture records of the model f l igh ts .  

Examples of the  motions encountered i n  pi tch and 
These time 

The 
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pitching osc i l la t ion  was a predominantly angular motion without much translation, 
whereas the rol l ing osc i l la t ion  had a substantial  t ranslat ion accompanying the  
angular motion. 
and the period of the ro l l ing  osc i l la t ion  was about 6 seconds. 
scale up t o  about 10 and 18 seconds, respectively, f o r  the ful l -scale  airplane. 

The period of the  pitching osc i l la t ion  was about 3.4 seconds 
These values 

In sp i t e  of the  f ac t  t ha t  the  model had unstable control-fixed pitching and 
rol l ing osci l la t ions i n  hovering f l i g h t  out of ground effect ,  the  p i lo t s  f e l t  
tha t  the general f l i g h t  behavior of the model w a s  good. 
flown smoothly and could be maneuvered readily from one posit ion t o  another. 
One reason tha t  the  model was easy t o  control i n  sp i t e  of the unstable osci l la-  
t ions w a s  tha t  the  motions were relat ively slow i n  s t a r t i ng  and were not easi ly  
excited by outside e f fec ts  such as gust disturbances o r  movements of the control 
and power cable. Another reason tha t  the  model was easy t o  control was tha t  the 
period of the  osc i l la t ion  was very long and thus the p i l o t  w a s  not conscious of 
i t s  presence i n  normal flying. 
a t  both model scale and fu l l  scale with the VZ-2 research airplane as indicated 
by references 3 and 4. 

The model could be 

This same general type o f  resu l t  was obtained 

I n  the  f l i g h t  tests t o  determine how much control power w a s  required f o r  
steady f l i g h t  and f o r  performing various maneuvers, the  model p i lo t s  found that 
l e s s  control acceleration was required f o r  sat isfactory control labi l i ty  than i s  
provided on the full-scale a i r c ra f t .  
trols should provide accelerations of about 0.80 radian/sec2 i n  pitch, 
1.08 radians/sec2 i n  r o l l  and 0.53 radian/sec2 i n  yaw. 
p i lo t s  found tha t  60 percent of the  scaled-down value i n  pi tch,  50 percent of 
the scaled-down value i n  r o l l ,  and 40 percent of the  scaled-down value i n  yaw 
were adequate f o r  performing any t e s t  maneuver required of the  model. It has 
been found, as pointed out i n  reference 1, that f lying model resu l t s  generally 
correlate well with ful l -scale  f l i g h t  t e s t  results on the  control power required 
i n  pi tch and r o l l ,  but the yaw-control requirements have not shown correlation 
with ful l -scale  experience. 
of simple alinement under steady f lying conditions and does not involve gusts, 
operation i n  cross winds, maneuvering i n  yaw, or  other disturbances and require- 
ments found i n  f i l l - s c a l e  t e s t s .  

The ful l -scale  a i r c ra f t  hovering con- 

Actually, the model 

The yaw-control task i n  model f lying i s  mainly one 

Hovering i n  Ground Effect 

In  addition t o  the  hovering f l i g h t  t e s t s  made out of ground effect ,  a number 
of f l i g h t s  were made t o  study the  effect  of close proximity t o  the ground on the 
model characterist ics.  These f l i g h t  t e s t s  showed tha t  near the ground the model 
w a s  somewhat easier  t o  fly i n  r o l l  and pi tch than it w a s  out of ground effect .  
The unstable control-fixed pitching motion that was  present a t  a l t i t ude  seemed 
t o  become stable at very low heights when the wheels were about t o  touch the 
ground. This character is t ic  i s  indicated by figure 9 which shows a t i m e  his tory 
of the  stick-fixed pitching motions of the  model when hovering near the ground. 
This figure shows the  stick-fixed motion t o  be a somewhat random motion of small 
amplitude when the wheels were almost touching the ground during the first par t  
of the f l i gh t .  
a f t e r  about 7 seconds, the motion developed into a f ixed amplitude osci l la t ion.  
After about 18 seconds of f l i gh t ,  the  motion damped when the wheels touched the  

When the model rose t o  a s l igh t ly  greater  height above the ground 
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ground but buil t  up again t o  a larger  amplitude motion. 
proximity on r o l l  was l e s s  pronounced than tha t  on pitch.  
not detect any appreciable change i n  s t a b i l i t y  but f e l t  t ha t  the ro l l ing  phase 
of the model motion became s l igh t ly  easier  t o  control as  the  model neared the 
ground. The variation of s t a t i c  s t a b i l i t y  with height above the ground, as 
measured i n  force t e s t s ,  i s  shown i n  figure 10. These data show tha t  the model 
had a s l igh t  amount of s t a t i c  s t a b i l i t y  i n  p i tch  and r o l l  as the model approached 
the ground; this condition probably accounts f o r  the  improved dynamic s t a b i l i t y  
and controllabil i ty.  

The effect  of ground 
The model p i l o t  could 

Unlike the ro l l ing  and pitching motions of the model, the  yawing motions 
became somewhat more d i f f i cu l t  t o  control as the  model neared the  ground. The 
model experienced e r r a t i c  yaw disturbances which were apparently caused by the  
e r r a t i c  nature of the recirculating slipstream which was aggravated by the other 
modelmotions. Although not large i n  magnitude, these disturbances resulted i n  
greater p i l o t  e f for t  being required t o  hold a desired heading f o r  hovering near 
the ground. The yaw p i l o t  also noticed a reduction i n  the yawing moment produced 
by the ailerons near the ground, but he did not f e e l  t ha t  this loss  of effective- 
ness w a s  the major factor  i n  the increased control e f for t  required. For most of 
the f l i g h t s  the  control used was  the  same S O o  deflection tha t  was used out of 
ground effect ,  but a few f l i g h t  t e s t s  were made with a yaw control deflection of 
k4Oo. 
the p i l o t  t o  correct quickly f o r  the e r r a t i c  disturbances but did not materially 
reduce the p i l o t  e f for t  o r  concentration required t o  hold a yaw heading. Fig- 
ure 11 shows the loss of effectiveness of t he  ailerons i n  ground proximity f o r  
the model as measured i n  force t e s t s .  These data show tha t  the yaw control 
effectiveness of the ailerons was  only about one-half as great when the wheels 
were almost touching the ground as when the model was out of ground effect .  

The increased control power gave a more posi t ive yaw control and enabled 

Take-off and landing f l i g h t  tests showed no apparent changes i n  t r i m  with 
a l t i t ude  about any of the  axes. 
hovering out of ground effect ,  several t e s t s  were made which showed no tendency 
of the model t o  move e i the r  forward o r  backward a t  take-off. 

With the controls perfect ly  trimmed f o r  

A very def in i te  ground effect  on the model l i f t  was noted i n  the landing 
t e s t s .  If the model thrust  was  reduced slightly so tha t  a slow ve r t i ca l  descent 
was s ta r ted  from hovering f l i gh t ,  the model would descend down t o  a certain point 
and would descend no f a r the r  u n t i l  the  thrust  w a s  fur ther  reduced. If the 
descent w a s  made a t  a s l igh t ly  f a s t e r  ra te ,  the  model would rebound s l igh t ly  as 
i f  it were bouncing on a spring. 
momentum would carry the  model on down i n  sp i t e  of the  favorable ground effect  
and it would s t r ike  the ground. 
ground proximity obtained from force t e s t s  of t h i s  model. 
20-percent increase i n  model l i f t  with constant propeller speed a t  a value of 
h/D of 0.25, which i s  approximately the height a t  which the  wheels would touch 
down f o r  the ful l -scale  airplane with the shock struts fu l ly  extended. 
of the data of reference 5 indicates that prac t ica l ly  none of t h i s  increase i n  
l i f t  due t o  ground proximity i s  caused by increase i n  the propeller thrust;  
therefore, it can be presumed tha t  almost the en t i re  20 percent increase i n  l i f t  
w a s  caused by an upload on the bottom of the fuselage, the  source of which i s  
explained i n  references 5 and 6. 

If the descent r a t e  was too f a s t ,  however, the 

Figure 12 shows the variation of l i f t  with 
These data show a 

Analysis 
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Level Flight i n  Transition 

Longitudinal s tab i l i ty . -  The basic s t a b i l i t y  of t he  model throughout t he  

a = Oo. 
t rans i t ion  f l i g h t  range w a s  determined during constant airspeed f l i g h t  t e s t s  
with the  model trimmed f o r  f l i g h t  a t  
experienced a re  shown i n  f igure  13 which presents t i m e  h i s tor ies  of the control- 
f ixed pitching motions f o r  wing incidence angles representing four different  a i r -  
speeds. The curves show that, as noted previously, t he  control-fixed motion i n  
hovering w a s  an unstable osci l la t ion.  A t  a wing incidence of 6 5 O ,  l i t t l e  differ-  
ence w a s  noticed i n  the motion since the  model w a s  a t  a very low forward speed 
because t h e  programed f l ap  w a s  being deflected during t h i s  wing-incidence change. 
A t  lower wing incidences, t h e  motions became less unstable and the  period of t he  
osc i l la t ion  became very long. I n  f a c t ,  the  unstable motions a t  lower wing angles 
were not noticeable a t  a l l  t o  the p i l o t  when he w a s  f ly ing  the  model i n  the  nor- 
mal  manner. For instance, the osc i l l a t ion  a t  a wing incidence of 25' had a very 
long period (about 6 seconds model scale)  and without looking carefully f o r  the  
osc i l la t ion  a t  constant forward speed, t he  p i l o t  would not ordinarily distinguish 
it from the  normal gust, o r  other disturbances that t h e  model experiences i n  
f l i gh t  tests. 
seems t o  show that the  two osc i l la tory  modes normal f o r  conventional forward 
f l i g h t  a re  beginning t o  appear - t he  short-period osc i l l a t ion  shows up i n  the  
p i tch  angle record, and t h e  long-period phugoid osc i l la t ion  seems t o  be appearing 
i n  the  longitudinal and v e r t i c a l  displacement t races .  This progressive change 
from a longitudinally unstable t o  an apparently stable f l i g h t  condition as the  
t rans i t ion  progresses from hovering t o  forward f l i g h t  i s  typ ica l  of other tilt- 
wing configurations such as that of reference 7. 

3kamples of t he  type of motions 

A t  t he  lowest wing angle (iw = 10') t h e  t i m e  history of f igure 13 

Lateral s tab i l i ty . -  I n  the t r ans i t i on  range, t he  model w a s  even easier t o  
f ly  i n  r o l l  than it had been i n  hovering. I n  f ac t ,  as soon as the  model s t a r t ed  
in to  t rans i t ion  from hovering, t he  r o l l  control became noticeably easier. This 
r e su l t  w a s  evidently caused by the  f a c t  that the  model w a s  s table  i n  r o l l  i n  the  
t rans i t ion  range of f l i g h t  instead of having an unstable osc i l la t ion  as it had 
i n  hovering, and that the  motions resul t ing from gusts o r  control disturbances 
consequently damped out instead of excit ing an unstable osci l la t ion.  These 
character is t ics  w e r e  observed i n  f l i g h t  tests which w e r e  made t o  study the  
control-fixed l a t e r a l  motions i n  t h e  t rans i t ion  range. I n  these t e s t s ,  the  
model w a s  trimmed as careful ly  as possible and then the  r o l l  and yaw p i l o t s  
stopped giving control so t h a t  t he  controls remained f ixed a t  t h i s  t r im set t ing.  
A t  a l l  angles of wing incidence t e s t ed  below iw = TO0,  the resul t ing model 
motion w a s  a slow sidewise divergence with l i t t l e  yawing and no observable 
rol l ing.  This type of motion might have been a s l igh t  aperiodic divergence o r  
might have been caused by some s m a l l  remaining out-of-trim se t t i ng  of t he  yaw 
control, but there  w a s  c lear ly  no s ignif icant  degree of osc i l la tory  in s t ab i l i t y .  
I n  order t o  investigate the  osc i l la tory  s t a b i l i t y  character is t ics  fur ther ,  some 
additional f l i g h t s  were made a t  angles of wing incidence from 800 t o  20° i n  
which, after the  trimmed f l i g h t  condition w a s  established, t he  model w a s  delib- 
erately disturbed by using the  controls t o  impart a combined ro l l ing  and yawing 
motion. Each t i m e ,  a f t e r  t he  controls became fixed, t he  ro l l ing  and yawing 
motions damped out quickly but then t h e  model performed the same sidewise trans- 
l a t iona l  divergence (with some yawing) noted i n  the previous control-fixed tests. 

9 



The f l i gh t  t e s t s  discussed, as w e l l  a s  normal controlled t rans i t ion  f l i gh t  
t e s t s ,  indicated tha t  the model had a region of neutral  directional s t a b i l i t y  
fo r  small angles of s ides l ip  over the en t i re  t rans i t ion  speed range. This sta- 
b i l i t y  problem appeared i n  controlled f l i g h t  as a tendency of the model t o  trim 
a t  a small s idesl ip  angle, i n  e i ther  r ight  or  l e f t  sideslips,  which w a s  objec- 
t ionable t o  the  p i lo t s .  Figure 14 presents the  resu l t s  of force t e s t s  of the  
present model which show neutral  direct ional  s t a b i l i t y  f o r  a range of s idesl ip  
angles of about 6 O ,  but unpublished resu l t s  from tests made with a l / l l - sca le  
model i n  the Langley 7- by 10-foot tunnel indicated a s l igh t  amount of direc- 
t i ona l  s t a b i l i t y  over the en t i r e  s idesl ip  range and did not show a f l a t  spot i n  
the  direct ional  s t a b i l i t y  curve. 
a number of minor changes i n  the configuration tha t  w e r e  made a f t e r  the con- 
s t ruct ion of the l/g-scale f lying model had been completed. 
modiQing the l/g-scale model, force t e s t s  were made which showed that the f l a t  
spot i n  the direct ional  s t a b i l i t y  curves could be eliminated with the flying 
model i f  the gaps between the fuselage and the wing f l ap  were sealed. 
f ig .  14.) The data of f igure 14 also show tha t  the other modifications d id  not 
significantly change the  direct ional  s t a b i l i t y  of the model. These other modi- 
f icat ions consisted mainly of changes t o  the  f i l l e t  a t  the  juncture of the ver- 
t i c a l  t a i l ,  p i tch fan support boom, and the fuselage. 

This l / l l - sca le  model, however, incorporated 

By temporarily 

(See 

I n  order t o  check the  effect  of sealing the  f l a p  gaps on the dynamic 
behavior of the model, f l i g h t  t e s t s  were made a t  various angles of wing inci-  
dence with the gaps between the  fuselage and the  wing f lap  sealed. 
character is t ics  of the model w e r e  found i n  these t e s t s  t o  be essent ia l ly  
unchanged from the unsealed condition and the  direct ional  s t a b i l i t y  was s t i l l  
considered by the  p i l o t  t o  be undesirably low. 
sea l  the  f laps  on the  f lying model and since very l i t t l e  difference i n  the 
f lying character is t ics  resulted from the modification, the f l i g h t  investigation 
was  continued with the  gap unsealed. 

The f l i gh t  

Because it was very awkward t o  

During the previously mentioned ser ies  of force t e s t s  made on the free- 
f l i g h t  model, a few t e s t s  were made with a larger  ve r t i ca l  t a i l .  The area of 
the ve r t i ca l  t a i l  w a s  increased 39 percent by an addition t o  the leading edge 
and top of the f i n  as  shown by the dashed l ines  i n  figure 2, and the t e s t s  were 
made wlth the gaps between the  f l a p  and fuselage open. 
e f fec t  of the larger  ve r t i ca l  t a i l  on the direct ional  s t a b i l i t y  at  
and 20'. In  addition t o  eliminating the neutral  s t a b i l i t y  a t  small s idesl ip  
angles, the larger  ve r t i ca l  t a i l  gave increased direct ional  s t a b i l i t y  over the 
en t i r e  range of s ides l ip  angles. 
c a l  ta i l ,  the f l i g h t  character is t ics  of the  model were much improved by the 
increase i n  direct ional  s t a b i l i t y  and there was no noticeable tendency on the  
par t  of the model t o  s ides l ip  even at  wing incidence angles as high as 50' where 
the  airspeed was  becoming f a i r l y  low. 

Figure 15 shows the 
iw = Oo, loo, 

In  f l i g h t  t e s t s  made by using the large ver t i -  

Descending Flight i n  Transition 

Ekperience with the VZ-2 t i l t-wing research a i r c ra f t ,  reported i n  refer- 
ence 4, has shown that i n  the reduced-power descending-flight conditions i n  the 
t rans i t ion  speed range, the wing has a tendency t o  s t a l l  and tha t  t h i s  s t a l l  
leads t o  buffeting, abrupt wing dropping, and generally e r r a t i c ,  wallowing 

10 



motions. These resu l t s  of the s t a l l i ng  were found t o  become so severe that  they 
effectively limited the r a t e  of descent tha t  the p i l o t  w a s  will ing to  use. This 
l imitation can be very serious from an operational standpoint since it tends t o  
occur i n  the speed range corresponding t o  the landing-approach condition where 
high ra tes  of descent must be maintained t o  take advantage of the short-field 
landing capability of V/STOL a i r c ra f t .  
reference 8, gave reasonably good agreement with the f'ull-scale f l i gh t  t e s t s  i n  
regard t o  the wing s t a l l i ng  and the l imitations imposed on the operation of the 
a i r c ra f t  by the wing-dropping and er ra t ic ,  wallowing motions associated with the 
s ta l l ing.  The buffeting, however, w a s  not detected on the  model which w a s  not 
instrumented and was remotely controlled so that the  p i l o t  did not f e e l  the 
buffeting. The free-flight model t e s t s  therefore did not give the whole answer 
but seemed t o  give the  most important resu l t s  with regard t o  the seriousness of 
the wing s ta l l ing .  
studied very carefully with regard t o  t h i s  important problem. 

Free-flight model t e s t s ,  reported i n  

The character is t ics  of the present model were therefore 

The character is t ics  of the  present basic model i n  simulated descending 
f l i g h t  were investigated over a wing incidence range of 20° t o  TO0. 
f l ap  deflection grogramed as scheduled on the ful l -scale  airplane (see f ig .  4) 
resulted i n  a 60 f l a p  deflection over most of the wing incidence range inves- 
tigated. A t  each t e s t  condition, the model was assigned a f l i g h t  ra t ing 
according t o  the  flying-model pi lot-rat ing system shown i n  table  III. 
model ra t ing system i s  shown and compared with the Cooper ra t ing system since 
the intent  of the model ra t ing  system i s  t o  consider the type of behavior of the 
model t ha t  wodd represent insofar as possible the behavior required of an a i r -  
plane t o  meet a l l  the conditions given under the Cooper ra t ing system. 
ratings f o r  the model are limited t o  the  s t a b i l i t y  and control aspects of 
f lying qual i t ies  since the remote-control p i l o t  is  unable t o  sense the buffeting 

The wing 

This 

The 

The p i l o t  ratings obtained i n  the t e s t s  a re  shown i n  figure 16 on a p lo t  of 
f l i g h t  path (or descent) angle against wing incidence. Ratings were obtained a t  
angles of wing incidence of 20°, 30°, 40°, and 50' f o r  descent angles of Oo, 5O, 
70, loo, l3', and 15'. 
obtained from the  individual ratings on l a t e ra l ,  directional,  longitudinal, and 
power character is t ics  (and f o r  that reason the longitudinal and l a t e r a l  s t a b i l i t y  
and control character is t ics  are not discussed separately as i n  other sections of 
the report) .  A t  each t e s t  point, two ratings were obtained: (1) a rat ing of the 
behavior of the model when reasonably smooth and steady f i i g h t  was maintained and 
(2) a rat ing f o r  disturbed f l i g h t  a f t e r  the model had been intentionally given a 
large disturbance o r  had been allowed t o  build up i t s  own large-amplitude dis- 
turbed motion. A t  s m a l l  descent angles, the model was very s table  and had t o  be 
disturbed intentionally with the controls, a f t e r  which the  disturbed motion 
danrped out quickly; therefore, f o r  these conditions, there w a s  no difference 
between the two rat ings and only one rat ing i s  shown i n  f igure 16. 
greatest  descent angles, steady f l i g h t  was not possible so only a disturbed- 
f l i g h t  ra t ing was given as indicated i n  figure 16. 

The rat ings shown i n  figure 16 a r e  overal l  ratings 

At the  

Figure 17 presents a summary of the p i l o t s '  opinions of the f lying qual i t ies  
of the  model i n  the form of boundaries obtained from the ratings of figure 16. 
Above the dotted area i n  f igure 17, the  model's character is t ics  were satisfac- 
tory and, i n  fac t ,  no difference from leve l  f l i gh t  was detected even when the 
model was intentionally disturbed. A s  the descent angle w a s  increased i n  the 
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dotted area of figure 17, the model required more and more p i l o t  a t tent ion t o  
the controls. A t  the  highest descent angles i n  the  dotted area, the l a t e r a l  
osci l la t ions pers is ted fo r  several cycles a f t e r  a disturbance. In  those condi- 
t ions intermittent s t a l l i n g  of a par t  of the wing could be observed from tufts 
on the wing. I n  the  hatched area of f igure 17, the  model experienced extensive 
wing s t a l l i ng  which caused abrupt wing dropping, abrupt losses i n  height, and 
the  generally e r r a t i c ,  wallowing motions normally associated with wing s t a l l .  
The model's f lying qua l i t i es  were unacceptable i n  t h i s  region. 

Figures 18 and 19 are  presented t o  i l l u s t r a t e  f o r  the iw = 30° condition 
the types of f l i g h t  character is t ics  encountered i n  the descent t e s t s .  Figure 18 
shows t i m e  h i s tor ies  (from motion-picture records) of the l a t e r a l  motions per- 
formed by the model while the  p i lo t s  were attempting t o  make a smooth and steady 
controlled f l i g h t  a t  descent angles of 0' and 13'. I n  leve l  f l i gh t  the model was 
very easy t o  f ly and required only occasional corrective control. 
large-amplitude motions a t  a descent angle of l3', however, were extremely d i f f i -  
cu l t  t o  control; and, i n  fac t ,  control of the model was lo s t  a t  times during the 
tes t s .  Figure 19 shows t i m e  h i s tor ies  obtained from f l i g h t s  made a t  
-7O,  and -loo 
intentionally disturbed from a smooth f lying condition by the  p i lo t .  
three long control pulses were used by the p i l o t  t o  s e t  up the motion, and the 
ensuing motion w a s  so highly damped tha t  very l i t t l e  p i l o t  e f for t  was needed t o  
reestablish steady f l i gh t .  7 = -7, only two rapid control pulses were 
needed t o  s t a r t  the motion but the motion was  s t i l l  mild enough so tha t  the 
p i l o t  was able t o  reestabl ish steady f l i g h t  f a i r l y  quickly. A t  7 = -10' only 
one control pulse resulted i n  the e r r a t i c ,  wallowing motions shown i n  the figure. 
These motions pers is ted i n  sp i t e  of the  p i l o t ' s  e f fo r t s  t o  reestablish steady 
f lying conditions. 

The e r ra t ic ,  

7 = - 5 O ,  

A t  7 = - 5 O ,  
t o  study the motions performed by the model a f t e r  it had been 

A t  

Several aspects of the behavior of the model do not show up i n  the  simple 
ratings. 
f o r  leve l  f l i gh t  a t  This ra t ing does not mean tha t  disturbances or 
wing s t a l l i ng  were noticed i n  t h i s  condition but r e f l ec t s  the f ac t  t ha t  a t  the 
lower airspeeds the model did not have as much s t a b i l i t y  as  a t  the higher speeds 
and more p i l o t  a t tent ion w a s  required, A second point i s  tha t  at times, during 
f l i g h t s  at  high-rate-of-descent conditions a t  iw = 30°, the  model would drop i n  
height abruptly without any appreciable e f fec t  on the  l a t e r a l  f l i g h t  character- 
i s t i c s  being noted. This abrupt loss i n  height w a s  a new type of motion not 
previously experienced i n  the  VZ-2 model t e s t s .  Observation of the tufts on 
the  wing showed that this abrupt dropping was  caused by a sudden symmetrical 
s ta l l  over a large par t  of the wing. The last point t ha t  should be brought out 
i n  addition t o  the simple ratings i s  that a t  high descent angles, somewhat dif- 
ferent  model motions were obtained a t  low angles of wing incidence than at  high 
angles of wing incidence. iw = 20°, 
steady f l i g h t  could be achieved very easi ly  and the  tufts showed no apparent 
s t a l l i ng  with descent angles as great as  10'. 
occurred at  this point, the  result ing abrupt wing dropping and generally e r ra t ic ,  
wallowing motions of the model were very d i f f i c u l t  t o  control and a rat ing of 7 
resulted. A t  
and intentionally disturbed f l i gh t  at any descent angle. 
showed disturbed flow on the wing f o r  steady f l i g h t  at  descent angles as low as 

First, it should be noted i n  figure 16 tha t  a rat ing of 4 was obtained 
iw = 50°. 

For example, as shown i n  figure 16, a t  

However, i f  a disturbance 

iw = 50°, however, there was not much difference between steady 
Although the  tufts 



7 O ,  the  model motions were not appreciably affected u n t i l  the descent angle 
exceeded a value of about 11'. This effect  might be expected since the high 
incidence of the thrust  l i n e  and the high f l ap  deflection a t  
i n  most of the weight being supported by power rather  than by wing l i f t  so t ha t  
wing s t a l l  affected only a very small part  of the t o t a l  l i f t .  

i w  = 50' resulted 

A few t e s t s  were made with the larger  ve r t i ca l  t a i l  ins ta l led  on the model. 
These t e s t s  did not cover a l l  the  descent t e s t  conditions tha t  were covered with 
the basic model but did cover enough conditions t o  indicate tha t  the larger t a i l  
did not appreciably improve the  behavior of the model a t  the descent conditions 
i n  which wing s t a l l i ng  was causing the behavior t o  be unsatisfactory. 

In  summary, the model had at l ea s t  a 6' descent capabili ty with no adverse 
effects.  
completely unacceptable f lying qua l i t i es  were encountered. It should be pointed 
out again tha t  buffet e f fec ts  could not be evaluated i n  these t e s t s .  It might 
be inferred, however, t ha t  since no disturbed flow could be detected on the wing 
at  descent angles of 6 O  or  less ,  buffeting would not be expected t o  cause any 
trouble i n  t h i s  f l i g h t  region. 

Another 3' o r  bo of descent w a s  available as a safety margin before 

Evaluation of Control Power Required 

lrongitudinal control.- As mentioned previously, the pi tch J e t  w a s  used 
throughout the f l i g h t  range t o  provide the longitudinal control required f o r  
maneuvering while the  longitudinal t r i m  required was provided by the  t a i l  rotor.  
Figure 20 shows the longitudinal control power, i n  excess of tha t  required f o r  
t r i m ,  planned f o r  the airplane compared with the p i tch  J e t  longitudinal control 
power (scaled up t o  ful l -scale  values) required on the model. The longitudinal 
control used on the model, which was l e s s  than tha t  available f o r  the ful l -scale  
airplane i n  a l l  cases, w a s  found t o  be adequate f o r  any of the t e s t  conditions 
including some rather  abrupt maneuvering i n  both leve l  and descending f l i gh t .  

Lateral control.- I n  the t ransi t ion-f l ight  mode, the ful l -scale  a i r c r a f t  
has a control mixing device which provides, a t  each angle of wing incidence, a 
predetermined combination of propeller p i tch  and aileron deflection i n  response 
t o  a r o l l  or yaw control from the p i lo t .  The controls were not mechanically 
phased on the model but the  r o l l  and yaw p i l o t s  could command preselected amounts 
and combinations of control moment during the  t rans i t ion  i n  order t o  study the 
control requirements. Figure 21  shows the  planned control powers f o r  full l a t -  
eral s t i ck  control and f u l l  rudder pedal control on the ful l -scale  a i r c ra f t ,  i n  
terms of angular accelerations, along with the control powers found t o  be 
required during the present model t e s t s  (includfng descending f l i g h t )  scaled up 
t o  ful l -scale  values. 
by the model p i l o t s  were l e s s  than the  planned a i r c ra f t  values. 
f igure 2 1  are  the helicopter control power requirements as s e t  for th  i n  the 
mili tary specification of reference 9 and a point indicating the l a t e r a l  con- 
t r o l  power requfred f o r  r o l l  a t  the higher forward speed. 

I n  a l l  cases the maximum control powers found desirable 
Also shown i n  

The roll-control requirements determined with the model a re  i n  good agree- 
ment with the helicopter requirements a t  the low-speed end of the t rans i t ion  
range and with the  normal airplane requirements a t  the high-speed end of the 



t rans i t ion  range. 
w a s  much l e s s  than the helicopter specification. 
yaw-control power required i n  model tes t ing  has not shown correlation with f u l l -  
scale experience f o r  the hovering condition, evidently because the task i s  
simpler i n  the model t e s t s .  The model f l i g h t  t e s t s  did indicate, however, t ha t  
even though force t e s t s  had shown tha t  the rudder was  providing as much yawing- 
control moment as might be expected, the model could not be flown by using only 
the aileron and rudder as a coordinated control even at the highest speeds i n  
these t e s t s  (iw = 0' with 6f = 30'). Analysis of the force-test data and the 
fi lm records of the f l i gh t  t e s t s  indicated tha t  two factors  were involved i n  the 
apparent lack of rudder effectiveness. F i r s t ,  the  adverse yawing moment caused 
by aileron deflection was apparently so large t h a t  the yawing-control moment 
provided by the rudder w a s  completely ineffective fo r  opposing the adverse 
aileron yawing moment. Second, the f i lm records showed tha t  when, f o r  example, 
a r ight  rudder control was given while the ailerons remained fixed, the large 
s ide force and adverse rol l ing moment due t o  rudder deflection caused the model 
t o  first r o l l  and s l ide  t o  the l e f t  before it would f i n a l l y  yaw and r o l l  t o  the 
right and start in to  the intended r ight  turn.  Since the rudder w a s  ineffective 
i n  f l i gh t  fo r  these reasons, it w a s  necessary t o  obtain yaw-control moment on 
the model from the d i f f e ren t i a l  propeller pitch.  

The yaw-control power required i n  the model t e s t s ,  however, 
It should be noted again tha t  

SUMMARY OF RESULTS 

The resu l t s  of . t he  f l i gh t  t e s t s  of the l/g-scale model of a four-propeller 
tilt-wing transport airplane without a r t i f i c i a l  s tab i l iza t ion  may be summarized 
as follows: 

1. Hovering-flight tests out of ground ef fec t  showed tha t  basic controls- 
fixed motions of the model consisted of unstable osci l la t ions i n  pitch and r o l l  
and tha t  the model was neutrally s table  i n  yaw. The unstable osci l la t ions were 
of re la t ively long period, however, and were very easy f o r  the p i lo t  t o  control. 

2. Hovering-flight t e s t s  i n  ground effect  showed tha t  the model had a posi- 
t i v e  ground ef fec t  on l i f t .  The pitching osc i l la t ion  became l e s s  unstable as 
the model neared the ground and was about neutral ly  s table  when the wheels were 
ju s t  off the ground. The effect  of the ground on the ro l l ing  osci l la t ion w a s  
l e s s  pronounced, but the rol l ing motions became s l igh t ly  eas ie r  t o  control as 
the model neared the ground. The model experienced s ignif icant  random yaw dis- 
turbances when hovering near the ground, and there  w a s  a noticeable reduction 
i n  yaw-control power available, but the yawing motions could be kept under con- 
t r o l  by the p i l o t  with suitable a t tent ion t o  the  controls. 

3 .  In  the t rans i t ion  range no trouble w a s  experienced with e i ther  longitudi- 
na l  o r  l a t e r a l  s t a b i l i t y  or control i n  leve l  forward f l i gh t ,  except t ha t  the 
model had about neutral  directional s t a b i l i t y  f o r  very s m a l l  angles of s idesl ip .  
In general, the model had at l ea s t  6' descent capabili ty with no adverse e f fec ts  
and no noticeable wing s ta l l ing .  
before stalling caused the flying qua l i t i es  t o  become completely unacceptable. 

Another 3' o r  4' of descent w a s  available 

14 



4. In  a l l  f l i g h t  regions, the mini" t o t a l  control powers found t o  be sat- 
isfactory i n  the model f l i gh t  t e s t s  were less than the  control power planned fo r  
the full-scale a i r c ra f t .  

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va . ,  August 5, 1964. 
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TABLE 1.- GEOKETRIC CHARACTERISTICS OF THE MODEL 

Fuselage: 
Le.h. ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.56 
Cross-sectional area, maxi", sq  f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.01 
Height, me;ximum, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.36 
Width, maxi", f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.01 

wing : 
Area, s q f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.60 
span, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.50 
Aspec t ra t io  8.53 
Mean aerodynamic chord, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.90 
Airfoil  section NACA 6j3-318 
Tip chord, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.67 
Root chord, ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.09 
Taper r a t io  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.61 
Sweepback of quarter chord, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.13 
Dihedral angle, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -2.12 
Pivot station, percent root chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42.5 
Aileron, each: 

Chord, percent wing chord 25 
Area, s q f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.38 

Chord, percent wing chord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Flap, each: 

Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Double s lo t ted  

Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  N l  

Inboard, 0.45 w i n g  semispan t o  0.69 w i n g  semispan . . . . . . . . . . .  Chord, 0.20 wing chord inboard t o  
Slat ,  each: 

Outboard. 0.85 wing semispan t o  1.00 wing semispan 
0.10 wing chord outboard . . .  Chord. 0.10 wing chord f u l l  length 

Vertical tai l :  
Basic: 

Area. s q f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.61 
Span, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.73 
Aspect r a t io  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.87 
Airfoil  section: 

Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  NACA0018 
Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  N A C A O O ~  

Tipchord, f t  0.37 
Root chord, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.48 
Taper r a t io  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.25 
Sweepback of quarter chord, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
Rudder : 

Tip chord, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.15 
Root chord, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.42 
Span, measured f r o m t i p  chord, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.06 

T a i l  length, center of gravity t o  0.25 mean aerodynamic chord, f t  . . . . . . . . . . . . . . . . .  2.38 

Area, s q f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.60 
Span, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Large : 

Aspect r a t io  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.71 
Tip chord, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.57 
Root chord, f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.89 
Taper r a t io  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.30 

Horizontal tai l :  
Area. s q f t  . . . . . . . . . . . . . . . . . . . . . . . . .  
Aspect r a t io  . . . . . . . . . . . . . . . . . . . . . . . . .  
Airfo i l  section: 

Root . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Tip chord. ft . . . . . . . . . . . . . . . . . . . . . . . .  
Root chord. ft . . . . . . . . . . . . . . . . . . . . . . . .  
span. f t  . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Taper r a t io  . . . . . . . . . . . . . . . . . . . . . . . . .  
Sweepback of quarter chord. deg . . . . . . . . . . . . . . .  
Mean aerodynamic chord. f t  . . . . . . . . . . . . . . . . . .  
Tai l  length. center of gravity t o  0.25 mean aerodynamic chord. 

. . . . . . . . . . . . . . . . . . . .  2.11 . . . . . . . . . . . . . . . . . . . .  5.68 

. . . . . . . . . . . . . . . . . .  N A C A O O ~ ~  . . . . . . . . . . . . . . . . . .  NACA0012 . . . . . . . . . . . . . . . . . . . .  0.39 . . . . . . . . . . . . . . . . . . . . .  0.78 . . . . . . . . . . . . . . . . . . . .  3.46 . . . . . . . . . . . . . . . . . . . .  0.50 . . . . . . . . . . . . . . . . . . . .  9.50 . . . . . . . . . . . . . . . . . . . .  0.61 
f t  . . . . . . . . . . . . . . . . . .  2.76 

Propellers : 
kin: 

Number of blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
Diameter. f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.72 

Number of blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
Diameter. f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0.89 
Moment arm. wing pivot t o  rotor center. ft . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.56 

T a i l :  
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TABU 11.- COMPARISON O F  AVERAGE MASS CHARACTERISTICS OF 

MODEL ( S O  UP) AND FULL-SCALE AIRPLANE 

Character is t ic  I Model (scaled up) I Airplane 
I I 

Gross weight. lb . . . .  
Ix. slug-ft2 . . . . . .  
Iy. slug-ft2 . . . . . .  
Iz. slug-ft2 . . . . . .  
ky. f t  . . . . . . . . .  
kx. f t  . . . . . . . . .  
kz. f t  . . . . . . . . .  
W/S. lb / f t2  . . . . . .  

52. 000 
307. 000 
205. 000 
418. 000 

13.8 
11.3 
16.1 
97.2 

37. 424 
176 . 430 
125. ooo 
270. 631 

12.2 
10.4 
15.4 

70 



TABLE =I.- COMPAFUSON OF MOEL RATING SYSW WITH COOPER WIT" SYSTEM 

Flying-model p i lo t - ra t ing  system 

Numerical 

Description I rating l l  
Extremely easy t o  f l y  - requires 

no a t ten t ion  t o  control 

Very easy t o  f Q  - requires prac t i -  
ca l ly  no a t ten t ion  t o  control 

Cooper p i l o t  opinion ra t ing  system 

Description 

Excellent, includes optimum 

Good, pleasant t o  f l y  

3 Easy t o  f l y  - requires very l i t t l e  'Sa t i s fac tory ,  but with some mildly 
a t ten t ion  t o  control unpleasant charac te r i s t ics  

primary 
mission 

accomplished 

Yes 

Yes 

Ye 6 

1 Adjective 

C ~ ~ b e  

landed ra t ing  

yes ~ Satisfactory 

3perat ing 
conditions 

Normal 
operat ion 

Yes 

4 Not d i f f i c u l t  t o  f l y  - requires Acceptable, but with unpleasant Yes Yes 
a t ten t ion  t o  control charac te r i s t ics  

5 Not too d i f f i c u l t  t o  f l y  - requires Undcceptable f o r  normal operation Doubtful Ye 6 Emergency 
considerable a t ten t ion  t o  control Unsatisfactory operation 

6 Dif f icu l t  t o  f l ~  - requires almost Acceptable f o r  emergency condi- Doubtful Yes 
constant a t ten t ion  t o  maintain 
f l i gh t  

t i on  only1 

7 Very  d i f f i cu l t  t o  f l y  - requires Unacceptable even f o r  emergency No Doubtful 
constant a t ten t ion  t o  maintain condition1 
f l i g h t  

8 Extremely d i f f i c u l t  t o  fQ - flyable Unacceptable - dangerous 
only with maximum a t ten t ion  given 

. t o  maintain f l i g h t  

No No Unacceptable 

No 
ope rat ion 

9 Unflyable - cannot be flown even Unacceptable - uncontrollable 
with maximum a t ten t ion  given t o  

, maintaining f l i g h t  

No No 

10 Catastrophic - model destruction Motions possibly violent enough t o  No No Cat as t rophic 
prevent p i l o t  escape 

lFa i lure  of s t a b i l i t y  autgnenter. 



I 

( a )  Model with iv = Oo and €if = Oo. L-62-9665 

Figure 1.- Photograph of model used in inves t iga t ion .  



(b) Transition f l i@;ht  i n  Langley m l - s c a l e  tunnel .  

Figure 1.- Concluded. 

L-63-8475 
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I I 

(a) Three-view sketch of model. All dimensions a re  in inches. 

Figure 2.- Model sketch. 



FW-ELEMEX'I COORDINATES 

Firs t  Element 

Chord 
Ration 

0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 
11.0 
12.0 
13.0 
14.0 
15.4 

Upper 

0 
1.47 
1-97 
2.33 
2.56 
2.71 
2.78 
2.82 
2.78 
2.65 
2.43 

- 
Lower 
- 

0 
-1.32 
-1.49 
-1.49 
-1.25 
-0.83 
- .56 - .07 
.21 
-40 - 51 

2.15 ~ .56 
1.81 67 

76 .25 
1.35 .42 

Chord 
Station 

0 
1.7 
3.0 
5.5 
8.0 
9.5 
12.8 
13.0 
14.2 
18.0 
23.0 
28.0 

Second Element 

-1.20 
1.40 
2.36 
3.68 
4.38 
4.52 
4.33 
4.03 
3.82 
3.07 
1.75 
0.96 
0 

Lower 

-1.20 
-2.89 
-2.94 
-2.28 
-2.28 
-2.06 
-1.67 

-0.90 

-1.46 
-1.31 

- .22 
.04 

0 

(b) Typical c ross  sec t ion  of wing with double s l o t t e d  f l a p  showing m a x i "  f l a p  def lec t ion  
and 0 . 2 5 ~  a i l e r o n  on second f l a p  element. A l l  coordinates i n  percent wing chord. 

Figure 2.- Concluded. 
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Figure 3.- Variation of model and airplane center-of-gravity position with wing incidence. 
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Figure 4.- Variation of f l a p  def lec t ion  and ho r i zon ta l - t a i l  incidence with wing incidence. 
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L-64-3008 
Figure 5.- Sketch of the setup used for flight tests in the Langley full-scale tunnel. 
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Figure 6.- Balance of forces  i n  descent and simulated descent conditions.  
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Figure 7.- Control-fixed pitching oscillation of model in hovering flight out of ground effect. 

27 



2 a 0 

rl 
0 
G 

-20 

-40 

0 1 2 3 4 5 6 

T i m e ,  sec  

Figure 8.- Control-fixed ro l l i ng  osc i l l a t ion  of model i n  hovering f l i g h t  out of ground e f f ec t  
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Figure 9.- Control-fixed pitching motion of model during hovering f l i g h t  i n  ground e f f e c t .  
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Figure 10.- Effect of ground proximity on s t a t i c  s t a b i l i t y .  Wheels touch at h/D = 0.24. 
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Figure 11.- Effect of ground proximity on aileron yaw control effectiveness. 
Wheels touch at h/D ~ ; i  0.24. 
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Figure 12.- Effect of ground proximity on lift at constant propel le r  r o t a t i o n a l  speed and blade p i t ch  angle.  
Wheels touch a t  h/D 0.24. 
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Figure 14.- Effect of some model modifications on variation of yawing-moment coefficient with 
sideslip. i, = OO and a = 00. 
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Figure 18.- Lateral motions of model while attempting smooth flight. i, = 30°. 
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Figure 20.- Longitudinal cont ro l  power ava i lab le  i n  excess of t h a t  required fo r  t r im on t h e  f u l l  a i rp lane  
compared with scaled-up model cont ro l  power required i n  t e s t s .  
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